Morphology, PKCδ expression, and synaptic responsiveness of different types of rat central lateral amygdala neurons.
نویسندگان
چکیده
Recent findings implicate the central lateral amygdala (CeL) in conditioned fear. Indeed, CeL contains neurons exhibiting positive (CeL-On) or negative (CeL-Off) responses to fear-inducing conditioned stimuli (CSs). In mice, these cells differ in their expression of protein kinase Cδ (PKCδ) and physiological properties. CeL-Off cells are PKCδ(+) and late firing (LF), whereas CeL-On cells are PKCδ(-) and express a regular-spiking (RS) or low-threshold bursting (LTB) phenotype. However, the scarcity of LF cells in rats raises questions about the correspondence between the organization of CeL in mice and rats. Therefore, we studied the PKCδ expression, morphological properties, synaptic responsiveness, and fear conditioning-induced plasticity of rat CeL neurons. No PKCδ(+) LF cells were encountered, but ≈20-25% of RS and LTB neurons were PKCδ(+). Compared with RS neurons, a higher proportion of LTB cells projected to central medial amygdala (CeM) and they had fewer primary dendritic branches, yet the amplitude of excitatory postsynaptic potentials (EPSPs) evoked by lateral amygdala (LA) stimulation was similar in RS and LTB cells. In contrast, LA-evoked inhibitory postsynaptic potentials (IPSPs) had a higher amplitude in LTB than RS neurons. Finally, fear conditioning did not induce plasticity at LA inputs to RS or LTB neurons. These findings point to major species differences in the organization of CeL. Since rat LTB cells are subjected to stronger feedforward inhibition, they are more likely to exhibit inhibitory CS responses than RS cells. This is expected to cause a disinhibition of CeM fear output neurons and therefore an increase in fear expression.
منابع مشابه
Morphology, Pkcδ Expression, and Synaptic Responsiveness of 5 Different Types of Rat Central Lateral Amygdala Neurons
1 2 3 4 MORPHOLOGY, PKCδ EXPRESSION, AND SYNAPTIC RESPONSIVENESS OF 5 DIFFERENT TYPES OF RAT CENTRAL LATERAL AMYGDALA NEURONS 6 7 8 9 10 Taiju Amano, Alon Amir, Sonal Goswami, Denis Pare 11 12 Center for Molecular and Behavioral Neuroscience, Rutgers, 13 The State University of New Jersey, Newark, New Jersey 07102. 14 15 16 17 Running Head: Heterogeneity among central lateral amygdala cells 18 ...
متن کاملMorphology and Synaptic Organization of Non-Dopaminergic Nigral Projections to the Medio Dorsal Thalamic Nucleus of the Rat, a Study by Anterograde Transport of PHA-L
Background: Mediodorsal (MD) thalamic nucleus, which is considered to take place between extra pyramidal and limbic feedback circuit, receives projective fibers from ventrolateral neurons of reticular part of substantia nigra (SNr). In order to better understand the influence and chemical reaction of these fibers upon MD nucleus, the morphology and synaptology of them were examined in the prese...
متن کاملP19: Long-Term Potentiation
The term synaptic plasticity points to a series of persistent changes related to the activity of synapses. Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulations. Differe...
متن کاملSubstance P excites GABAergic neurons in the mouse central amygdala through neurokinin 1 receptor activation.
Substance P (SP) is implicated in stress regulation and affective and anxiety-related behavior. Particularly high expression has been found in the main output region of the amygdala complex, the central amygdala (CE). Here we investigated the cellular mechanisms of SP in CE in vitro, taking advantage of glutamic acid decarboxylase-green fluorescent protein (GAD67-GFP) knockin mice that yield a ...
متن کاملCompetition among model lateral amygdala principal cells during Pavlovian fear conditioning
Inputs about the conditioned (CS) and unconditioned (US) stimuli converge in the lateral amygdala (LA) during classical fear conditioning (FC). This leads to potentiation of CS inputs to LA neurons, and consequent increases in the firing of central medial amygdala (CeM) cells. In turn, CeM cells drive conditioned fear responses via their projections to fear effector neurons. However, transmissi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 108 12 شماره
صفحات -
تاریخ انتشار 2012